Topology-Driven Magnetic Quantum Phase Transition in Topological Insulators
DOI: 10.1126/science.1230905

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 22, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/339/6127/1582.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2013/03/27/339.6127.1582.DC1.html

This article cites 38 articles, 5 of which can be accessed free:
http://www.sciencemag.org/content/339/6127/1582.full.html#ref-list-1

This article appears in the following subject collections:
Physics
http://www.sciencemag.org/cgi/collection/physics
The breaking of time reversal symmetry in topological insulators may create previously unknown band topology is the fundamental driving force for the magnetic quantum phase transition. The measurements and density functional theory calculations. We present strong evidence that the bulk a topological quantum phase transition is revealed through both angle-resolved photoemission

References and Notes
5. S. Wright, Genetics 24, 539 (1939).
9. B. Charlessworth, D. Charlesworth, Elements of Evolutionary Genetics (Roberts and Company, Greenwood Village, CO, 2010).
16. Materials and methods are available as supplementary materials on Science Online.

Acknowledgments: We thank D. Conrad, Y. Lee, M. Nobrega, J. Pickrell, and H. Shin as well as A. Kermany, A. Venkat, and other members of the LPS labs for helpful discussions; I. Aneas, M. Calskin, M. Nobrega, and C. Ober for their assistance with experiments; and G. Coop for discussions and comments on an earlier version of this manuscript. E.M.L. was supported in part by NIH training grant T32 GM070179. This work was supported by NIH HLO05226 to J.D.W.; Israel Science Foundation grant 149210 to G.S.; a Wolfson Royal Society Merit Award, a Wellcome Trust Senior Investigator award (095552/Z1/Z), and Wellcome Trust grants 090322/Z/09/Z and 075491/04/04 to P.D.; Wellcome Trust grant 086084/08/08 to G.M.; and NIH grant GM12861 to M.P. M.P. is a Howard Hughes Medical Institute Early Career Scientist. The data set of shared SNPs is available from http://przeworski.uchicago.edu/wordpress/?page_id=20. Data from the validation experiment are available from GenBank under accession nos. KC541701 to KC542146. The biological material obtained from the San Diego Zoo and used in this study is subject to a materials transfer agreement.

Supplementary Materials
www.sciencemag.org/cgi/content/full/science.1234070/DC1
Materials and Methods
Figs. S1 to S9
Tables S1 to S20
References
13 December 2012; accepted 1 February 2013
Published online 14 February 2013; 10.1126/science.1234070

REPORTS

Topological Driven Magnetic Quantum Phase Transition in Topological Insulators
Jinsong Zhang,1,2 Cui-Zu Chang,2,3 Peizhe Tang,1 Zuocheng Zhang,1 Xiao Feng,2 Kang Li,2 Li-Li Wang,2 Xi Chen,2 Chaoxiong Liu,2 Wenhu Li,2 Ke He,2 Qi-Kun Xue,1,2 Xucun Ma,2 Yayu Wang†

The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2Se3 topological insulator films grown by means of magnetic beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.

The metallic surface states of three-dimensional (3D) topological insulators (TIs) are protected by time reversal symmetry (TRS) (1–3). Although breaking the TRS is generally detrimental to these states, it may also lead to exotic topological quantum effects. Examples include image magnetic monopoles (4), a quantized anomalous Hall effect (5, 6), giant magneto-optical effects (7), and a dissipationless inverse spin–Galvanic effect (8). A key step for realizing these previously unknown quantum states is to tune the magnetic ordering in TIs in a controlled manner and investigate the interplay between magnetism and topological order.

With their large bulk gap and a single-surface Dirac cone, Bi2Te3 and Bi2Se3 (9–11) are widely used as hosts for TRS-breaking perturbations. In Mn-doped Bi2Te3 single crystals, magnetization

1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P. R. China. 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China. 3Department of Physics, the Pennsylvania State University, University Park, PA 16802–6300, USA.
†Corresponding author. E-mail: kehe@aphy.iphy.ac.cn (K.H.); yayuwang@tsinghua.edu.cn (Y.W.)
Fig. 1. Schematic setup and transport results on Bi$_{1.78}$Cr$_{0.22}$Te$_3$ and Bi$_{1.78}$Cr$_{0.22}$Se$_3$. (A) Schematic crystal structure of Bi$_{2-y}$Cr$_y$(Se$_x$Te$_{1-x}$)$_3$ (two QLs are shown). (B) Schematic device for the magneto transport measurements. (C) The Hall effect of Bi$_{1.78}$Cr$_{0.22}$Te$_3$ film shows hysteretic loops below $T_C = 20$ K with a positive AHE term, and (D) the MC curves show a butterfly-shaped hysteresis pattern. (E) In the Bi$_{1.78}$Cr$_{0.22}$Se$_3$ film, the Hall effect shows a negative curvature without hysteresis. (F) The MC curves display a WL-to-WAL crossover.

Fig. 2. The magnetic QPT in the Bi$_{1.78}$Cr$_{0.22}$(Se$_x$Te$_{1-x}$)$_3$ films. (A to E) Field-dependent Hall traces of Bi$_{1.78}$Cr$_{0.22}$(Se$_x$Te$_{1-x}$)$_3$ films with $0.22 \leq x \leq 0.86$ measured at varied temperatures. (F) Systematic evolution of the Hall effect of all the samples (0 $\leq x \leq 1$) measured at $T = 1.5$ K. (G) Magnetic phase diagram of Bi$_{1.78}$Cr$_{0.22}$(Se$_x$Te$_{1-x}$)$_3$ summarizing the intercept ρ_{yx}^0 as a function of x and T. The T_C of the FM phase is indicated by the solid symbols.
measurements demonstrate a ferromagnetic (FM) state with a Curie temperature \((T_C)\) of up to 12 K \((J2)\). On the cleaved surface of an Fe-doped Bi\(_2\)Se\(_3\) single crystal, angle-resolved photoemission spectroscopy (ARPES) reveals the opening of an energy gap at the Dirac point \((J3)\). Iron (Fe) atoms deposited on the surface of a Bi\(_2\)Se\(_3\) single crystal are found to create odd multiples of Dirac-like surface states \((J4)\). Scanning tunneling microscopy on the surface of magnetically doped TI crystals demonstrates that breaking TRS can lead to previously unknown quasiparticle interference patterns \((J5)\) and strong spatial variations for the helical surface states \((J6)\). Most of these previous studies focused on the effect of magnetism on the topological surface states; however, little is known about how the magnetic ordering is affected by the topological property. Because the \(Z_2\) bulk topology is the most fundamental identity of a TI, it probably also plays a role in determining the phases and phase transitions in magnetically doped TIs. To test this conjecture, we fabricated chromium (Cr)-doped Bi\(_2\)(Se\(_{1-x}\)Te\(_x\))\(_3\) TI films using molecular beam epitaxy \((J7)\). By varying the mixing ratio of Bi\(_2\)Se\(_3\) and Bi\(_2\)Te\(_3\), we can actively modify the strength of spin-orbit coupling (SOC), which is essential for the band inversion of TIs. In the resulting Bi\(_{1.78}\)Cr\(_{0.22}\)(Se\(_{1-x}\)Te\(_x\))\(_3\) \((\text{Fig. 1A})\), the Cr dopants substitute Bi sites, and Se/Te atoms are randomly mixed. All of the films have the same thickness \(d = 8\) quintuple layers (QLs), so that they are in the 3D regime with decoupled surfaces \((J8)\). The Cr content is fixed at \(y = 0.22\) because at this doping level, the density of local moments is high enough to sustain long-range magnetic order, and the SOC strength is reduced to the verge of a topological phase transition \((J9)\).

Magneto transport measurements on the TI films (Fig. 1B) are made in the presence of an external magnetic field \((H)\) perpendicular to the film plane. At the base temperature \(T = 1.5\) K, the Hall effect of the 8-QL Bi\(_{1.78}\)Cr\(_{0.22}\)Te\(_3\) film (Fig. 1C) shows a hysteretic loop and a nearly square-shaped positive jump, the hallmarks of anomalous Hall effect (AHE) in FM conductors \((J0)\). The total 2D Hall resistivity \(\rho_{xy}\) can be expressed as \(\rho_{xy} = R_xM(T,H) + R_yH\), where \(M(T,H)\) is the magnetization and \(R_x\) and \(R_y\) are the anomalous and normal Hall coefficients, respectively. Both the anomalous Hall resistivity and the coercive force \((H_{coerc})\) decrease as \(T\) rises. The Hall traces become fully reversible at \(T > 20\) K; thus, the \(T_C\) of this film is around 20 K. The normal Hall effect at high \(H\) has a negative slope for the entire temperature range (fig. S2), indicating the existence of electron-type charge carriers. The magnetoconductivity (MC) curves taken at \(T < T_C\) show butterfly-shaped hysteresis at weak \(H\) (Fig. 1D), as commonly observed in FM metals. MC keeps increasing at higher \(H\), which is indicative of the weak localization (WL) of charge carriers instead of the weak antilocalization (WAL) in pristine Bi\(_2\)Te\(_3\) \((J1)\).

The Cr-doped Bi\(_2\)Se\(_3\) exhibits a very different transport behavior. At \(T = 1.5\) K, the Hall trace of Bi\(_{1.78}\)Cr\(_{0.22}\)Se\(_3\) film (Fig. 1E) has a pronounced negative curvature at weak \(H\) but shows no observable hysteresis, which is consistent with the field-induced AHE in paramagnetic (PM) materials without spontaneous magnetization. The MC curves also show no sign of hysteresis even at the base temperature (Fig. 1F). MC changes from positive at low \(T\) to negative at high \(T\), which is consistent with the WL-to-WAL crossover reported previously \((J2)\). The possible existence of in-plane ferromagnetism in the Bi\(_{1.78}\)Cr\(_{0.22}\)Se\(_3\) film is ruled out by magnetization and magneto transport

![Fig. 3. ARPES measurements on Bi_{1.78}Cr_{0.22}(Se_{1-x}Te_x)\(_3\) films. (A to F) ARPES band maps and (G to L) the MDCs taken at 120 K along the K-T-K direction on Bi\(_{1.78}\)Cr\(_{0.22}\)(Se\(_{1-x}\)Te\(_x\))\(_3\), with \(x = 0, 0.22, 0.52, 0.67, 0.86\) and 1.0. The blue and red dashed lines in (A) to (C) indicate the surface states with opposite spin polarities. In (D) to (F), an energy gap \(\Delta\) opens between the bulk valence band and conduction band.](image-url)
measurements with H applied along the film plane (fig. S12).

To uncover the origin of the sharp contrast between the magneto transport properties of Cr-doped Bi$_{2}$Te$_{3}$ and Bi$_{2}$Se$_{3}$, we fabricated Cr-doped Bi$_{2}(Se_{x}Te_{1-x})_{3}$, an isostructural, isovalent mixture of Bi$_{2}$Te$_{3}$ and Bi$_{2}$Se$_{3}$. The Hall traces are displayed in Fig. 2, A to E, measured on five Bi$_{1.78}$Cr$_{0.22}$(Se$_{x}$Te$_{1-x}$)$_{3}$ films with $x = 0.22$ all show a hysteretic response at low T, reflecting FM ordering. As the Se content is increased to $x = 0.58$, however, the hysteresis disappears, whereas the gap amplitude keeps increasing. Because the surface states derive from the nontrivial bulk topology, their absence for $x \geq 0.67$ suggests that the bulk band structure in this regime is topologically trivial. Therefore, the ARPES results reveal a topological QPT, a transition from the TI to trivial band insulator, accompanying the magnetic QPT. The ARPES patterns are very similar to that in BiTl(S$_{1.8}$Se$_{0.2}$)$_{2}$ TIs, showing the topological QPT induced by S substitution of Se (23, 24).

The topological QPT is also corroborated through density functional theory (DFT) calculations (17). The signature of a topological QPT in the bulk band structure, a gap closing point at the critical SOC strength, can be seen clearly in the DFT results on Cr-doped Bi$_{2}$Se$_{3}$ (fig. S7). The topological QPT is caused by the reduced SOC strength resulting from the Cr substitution.

Theoretical calculations of the band structure and magnetic properties. DFT-calculated bulk band structure of Bi$_{1.75}$Cr$_{0.25}$(SexTe$_{1-x}$)$_{3}$, with (A) $x = 0$, (B) 0.58, (C) 0.67, (D) 0.72, and (E) 1.0. (F) The topological phase diagram. Between $x = 0.5$ and critical point $x_{c} = 0.66$, the bulk band structure is inverted. Above that, the band structure becomes normal. (G) The calculated spin susceptibility of the four-band model for different μ and M_{0}. (H) Anomalous Hall conductivity σ_{xy} as a function of M_{0} with $G_{1} = 0$ and $G_{2} = 0.02$ eV at fixed $\mu = 0.4$ eV showing the sign reversal of σ_{xy} across the topological QPT.

Fig. 4. Theoretical calculations of the band structure and magnetic properties.
of Bi. At sufficiently high Cr doping, the SOC is not strong enough to invert the bands, leading to a trivial bulk topology (19). In contrast, for Cr-doped Bi$_2$Te$_3$ our DFT calculations show that the bulk band remains inverted for Cr content up to y = 0.25 (figs. S8 and S9). The more robust band inversion is a result of the larger SOC strength of Te as compared with Se. The calculated band structures of Bi$_{1.75}$Cr$_{0.25}$(Se$_{0.1}$Te$_{0.9}$)$_3$ with varied x (Fig. 4, A to E) show a transition from inverted to normal bands caused by the reduced SOC strength with increasing Se/Te ratio. The calculated bulk gap at the Γ point is summarized in Fig. 4F, which clearly shows a topological QPT near $\Delta x \approx 0.66$, which is in agreement with the experiments.

With the correlation between the magnetic and topological QPTs firmly established, we turned to a more fundamental question: Which phase transition is the driving force, and which one is the consequence? Two pieces of evidence support the scenario that topology determines the magnetic ordering. First, in our Bi$_{1.75}$Cr$_{0.25}$(Se$_{0.1}$Te$_{0.9}$)$_3$ samples the Cr content is fixed, and only the Se/Te ratio is varied. This provides a knob for fine-tuning the SOC strength—hence, the bulk band topology—but the magnetic property is not directly affected. Therefore, the magnetic QPT should be a secondary effect of the topological QPT. Second, the ARPES results show that even at high T when all the samples are in the FM state, the two regimes separated by the QCP already develop different topologies. At low T, the magnetic ground states form following the preformed topological character, with the FM phase resulting from the nontrivial topology and transitioning to the PM phase when the bulk turns topologically trivial.

The topological origin of the magnetic QPT is further supported by the effective model calculations (17). We calculated the z-direction spin susceptibility (χ_{zz}) of eight QL magnetically doped TI films using an effective four-band model (Fig. 4G) as a function of the chemical potential (μ) and the mass term (M_0). In the inverted regime with $M_0 < 0$, χ_{zz} always remains a large value when μ is around the gap, as a consequence of the van Vleck mechanism (5); the second-order matrix element is strongly enhanced when the bulk bands become inverted. The topologically nontrivial phase thus strongly favors an FM ordering, which naturally explains the topology-driven magnetic QPT discovered in the experiments. The van Vleck mechanism is further supported by the magnetization measurements (fig. S10), which show that the ferromagnetism occurs in the bulk rather than on the surfaces (25, 26). The out-of-plane magnetic anisotropy (fig. S11) is also consistent with the van Vleck-type FM order in TIs (5).

To reveal the physical origin of the AHE sign change at the QCP, we calculated σ_{xy} based on the four-band model, with two additional Zeeman splitting terms, χ_{z2} and χ_{x2}, from the exchange coupling between the electrons and magnetic impurities (17). The σ_{xy} value is summarized in Fig. 4H as a function of M_0 with fixed chemical potential, which clearly uncovers a sign change when the band gap is reversed, which is in good agreement with the experimental observation. The close correlation between the sign of AHE and topological QPT suggests that it can be used as a transport fingerprint for the bulk topology. This is not unexpected given the growing recognition of the topological nature of the intrinsic AHE in recent years (27, 28). The extrinsic AHE, which may be present in realistic materials, is ignored here because it typically dominates in highly metallic materials, whereas the disordered TI films studied here are poorly conductive (20).

The topologically nontrivial FM states with tunable magnetic properties revealed here provide an ideal platform for realizing the exotic magneto-electric effects proposed by theory. The topology-driven magnetic QPT may also inspire new ideas for topological-magnetic phenomena and spintronic applications in TIs with broken TRS. We cannot completely rule out all other possibilities for the disappearance of FM ordering across the topological QPT. For example, the ARPES results (Fig. 3) show that the properties of itinerant carriers also change with Se content, which may affect an itinerant-driven FM mechanism.